
Fortran language

 1

What is Fortran?

Fortran is a general purpose programming language, mainly intended for mathematical
computations in e.g. engineering. Fortran is an acronym for FORmula TRANslation, and was originally
capitalized as FORTRAN. Fortran was the first ever high-level programming languages. The work on
Fortran started in the 1950's at IBM and there have been many versions since. By convention, a Fortran
version is denoted by the last two digits of the year the standard was proposed. Thus we have

* Fortran 66
* Fortran 77
* Fortran 90 (95)

The most common Fortran version today is still Fortran 77, although Fortran 90 is growing in

popularity. Fortran 95 is a revised version of Fortran 90 which is expected to be approved by ANSI
soon (1996). There are also several versions of Fortran aimed at parallel computers.

1. Fortran 77 Basics

A Fortran program is just a sequence of lines of text. The text has to follow a certain syntax to
be a valid Fortran program. We start by looking at a simple example:

program circle
real r, area
c This program reads a real number r and prints
c the area of a circle with radius r.
print*, 'Give radius r:'
read *, r
area = 3.14159*r*r
print *, 'Area = ', area
stop
end

The lines that begin with with a "c" are comments and has no purpose other than to make the program
more readable for humans. Originally, all Fortran programs had to be written in all upper-case letters.
Most people now write lower-case since this is more legible, and so will we.
Program organization
A Fortran program generally consists of a main program (or driver) and possibly several subprograms
(or procedures or subroutines). For now we will assume all the statements are in the main program;
subprograms will be treated later. The structure of a main program is:

 program name
 declarations

statements
stop
end

Fortran language

 2

The stop statement is optional and may seem superfluous since the program will stop when it
reaches the end anyways, but it is recommended to always terminate a program with the stop statement
to emphasize that the execution flow stops there.

Column position rules

Fortran 77 is not a free-format language, but has a very strict set of rules for how the source
code should be formatted. The most important rules are the column position rules:

Col. 1 : Blank, or a "c" or "*" for comments
Col. 2-5 : Statement label (optional)
Col. 6 : Continuation of previous line (optional)
Col. 7-72 : Statements
Col. 73-80: Sequence number (optional, rarely used today)
Most lines in a Fortran 77 program starts with 6 blanks and ends before column 72, i.e. only the
statement field is used. Note that Fortran 90 allows free format.

Comments

A line that begins with the letter "c" or an asterisk in the first column is a comment. Comments
may appear anywhere in the program. Well-written comments are crucial to program readability.

Continuation

Occasionly, a statement does not fit into one single line. One can then break the statement into
two or more lines, and use the continuation mark in position 6. Example:

c23456789 (This demonstrates column position!)
c The next statement goes over two physical lines
area = 3.14159265358979
+ * r * r
Any character can be used instead of the plus sign as a continuation character. It is considered good
programming style to use either the plus sign, an ampersand, or numbers (2 for the second line, 3 for
the third, and so on).

2. Variables, types, and declarations
Variable names

Variable names in Fortran consist of 1-6 characters chosen from the letters a-z and the digits 0-
9. The first character must be a letter. (Note: Fortran 90 allows variable names of arbitrary length).
Fortran 77 does not distinguish between upper and lower case, in fact, it assumes all input is upper
case.

Types and declarations

Every variable should be defined in a declaration. This establishes the type of the variable. The
most common declarations are:
integer list of variables
real list of variables
complex list of variables
logical list of variables
character list of variables

Fortran language

 3

The list of variables should consist of variable names separated by commas. Each variable
should be declared exactly once. If a variable is undeclared, Fortran 77 uses a set of implicit rules to
establish the type. This means all variables starting with the letters I-N are integers and all others are
real. Many old Fortran 77 programs uses these implicit rules, but you should not! The probability of
errors in your program grows dramatically if you do not consistently declare your variables.

The parameter statement

Some constants appear many times in a program. It is then often desirable to define them only
once, in the beginning of the program. This is what the parameter statement is for. It also makes
programs more readable. For example, the circle area program should rather have been written like
this:
program circle
real r, area, pi
parameter (pi = 3.14159)
c This program reads a real number r and prints

Fortran language

 4

c the area of a circle with radius r.
write (*,*) 'Give radius r:'
read (*,*) r
area = pi*r*r
print *, 'Area = ', area
stop
end

The syntax of the parameter statement is
parameter (name = constant, ... , name = constant)
The rules for the parameter statement are:

* The "variable" defined in the parameter statement is not a variable but rather a constant whose value
can never change
* A "variable" can appear in at most one parameter statement
* The parameter statement(s) must come before the first executable statement
Some good reasons to use the parameter statement are:
* it helps reduce the number of typos
* it is easy to change a constant that appears many times in a program

3. Expressions and assignment
Constants

The simplest form of an expression is a constant. There are 4 types of constants, corresponding
to the 4 data types. Here are some integer constants:
1
0
-100
32767
+15
Then we have real constants:
1.0
-0.25
2.0E6
3.333E-1

The third type is logical constants. These can only have one of two values:
.TRUE.
.FALSE.
Note that the dots enclosing the letters are required.

The last type is character constants. These are most often used as an array of characters, called a
string. These consist of an arbitrary sequence of characters enclosed in apostrophes (single quotes):
'ABC'
'Anything goes!'
'It is a nice day'
Strings and character constants are case sensitive. A problem arises if you want to have an apostrophe
in the string itself. In this case, you should double the apostrophe:
'It''s a nice day'

Fortran language

 5

Expressions
The simplest expressions are of the form
operand operator operand
and an example is
x + y

 The result of an expression is itself an operand, hence we can nest expressions together like
x + 2 * y
 This raises the question of precedence: Does the last expression mean x + (2*y) or (x+2)*y? The
precedence of arithmetic operators in Fortran 77 are (from highest to lowest):

** {exponentiation}
*,/ {multiplication, division}
+,- {addition, subtraction}

 All these operators are calculated left-to-right, except the exponentiation operator **, which has
right-to-left precedence. If you want to change the default evaluation order, you can use parentheses.
The above operators are all binary operators. there is also the unary operator - for negation, which takes
precedence over the others. Hence an expression like -x+y means what you would expect.
 Extreme caution must be taken when using the division operator, which has a quite different
meaning for integers and reals. If the operands are both integers, an integer division is performed,
otherwise a real arithmetic division is performed.
 For example,
3/2 equals 1, while 3./2. equals 1.5.

Assignment
The assignment has the form
variable_name = expression
 The interpretation is as follows: Evaluate the right hand side and assign the resulting value to the
variable on the left. The expression on the right may contain other variables, but these never change
value! For example,
area = pi * r**2
does not change the value of pi or r, only area.

Type conversion

When different data types occur in the same expression, type conversion has to take place,
either explicitly or implicitly. Fortran will do some type conversion implicitly. For example,
real x
x = x + 1
will convert the integer one to the real number one, and has the desired effect of incrementing x by one.
However, in more complicated expressions, it is good programming practice to force the necessary type
conversions explicitly. For numbers,

the following functions are available:
int
Real
ABS,IABS

Fortran language

 6

ichar
char
 The first three have the obvious meaning. ichar takes a character and converts it to an integer,
while char does exactly the opposite.

4. Logical expressions

Logical expressions can only have the value .TRUE. or .FALSE.. A logical expression can be
formed by comparing arithmetic expressions using the following relational operators:

.LT. meaning < (less than)
.LE. <= (less than or equal to)
.GT. > (greater than)
.GE. >= (greater than or equal to)
.EQ. = (equal to)
.NE. /= (not equal to)

So you cannot use symbols like < or = for comparison in Fortran 77, but you have to use the
correct two-letter abbreviation enclosed by dots! (Such symbols are allowed in Fortran 90, though.)
Logical expressions can be combined by the logical operators .AND. .OR. .NOT. which have the
obvious meaning.
Logical variables and assignment
Truth values can be stored in logical variables. The assignment is analagous to the arithmetic
assignment. Example:
logical a, b
a = .TRUE.
b = a .AND. 3 .LT. 5/2

 The order of precedence is important, as the last example shows. The rule is that arithmetic
expressions are evaluated first, then relational operators, and finally logical operators. Hence b will be
assigned .FALSE. in the example above.
Logical variables are seldom used in Fortran. But logical expressions are frequently used in conditional
statements like the if statement.

5. The if statements

An important part of any programming language are the conditional statements. The most
common such statement in Fortran is the ifstatement, which actually has several forms. The simplest
one is the logical if statement:
if (logical expression) executable statement
This has to be written on one line. This example finds the absolute value of x:
if (x .LT. 0) x = -x
If more than one statement should be executed inside the if, then the following syntax should be used:
if (logical expression) then
statements
endif

Fortran language

 7

The most general form of the if statement has the following form:

if (logical expression) then
statements
elseif (logical expression) then
statements
:
:
else
statements
endif
The execution flow is from top to bottom. The conditional expressions are evaluated in sequence until
one is found to be true. Then the associated code is executed and the control jumps to the next
statement after the endif.
Nested if statements
if statements can be nested in several levels. To ensure readability, it is important to
use proper indentation. Here is an example:

if (x .GT. 0) then
if (x .GE. y) then
print*, 'x is positive and x >= y'
else
print*, 'x is positive but x < y'
endif
elseif (x .LT. 0) then
print*, 'x is negative'
else
print*, 'x is zero'
endif
You should avoid nesting many levels of if statements since things get hard to follow.
H.W //write a Fortran program to assignment the real variable t the following value:
x+y if x and y are both positive.
x-y if x is positive and y is negative.
y if x is negative.
0 if x or y is zero.

6. Loops

For repeated execution of similar things, loops are used. If you are familiar with other
programming languages you have probably heard about for-loops, while-loops, and until-loops. Fortran
77 has only one loop construct, called the do-loop. The do-loop corresponds to what is known as a for-
loop in other languages. Other loop constructs have to be simulated using the if and goto statements.
do-loops
The do-loop is used for simple counting. Here is a simple example that prints the cumulative sums of
the integers from 1 through n (assume n has been assigned a value elsewhere):
integer i, n, sum
sum = 0
do 10 i = 1, n
sum = sum + i

Fortran language

 8

print*, 'i =', i
print*, 'sum =', sum
10 continue

 The number 10 is a statement label. Typically, there will be many loops and other statements in
a single program that require a statement label. The programmer is responsible for assigning a unique
number to each label in each program (or subprogram). Recall that column positions 2-5 are reserved
for statement labels. The numerical value of statement labels have no significance, so any integer
numbers can be used. Typically, most programmers increment labels by 10 at a time.
The variable defined in the do-statement is incremented by 1 by default. However, you can define any
other integer to be the step. This program segment prints the even numbers between 1 and 10 in
decreasing order:
integer i
do 20 i = 10, 1, -2
print*, 'i =', i
20 continue

The general form of the do loop is as follows:
do label var = expr1, expr2, expr3
statements
label continue
var is the loop variable (often called the loop index) which must be integer. expr1 specifies the initial
value of var, expr2 is the terminating bound, and expr3 is the increment (step).
Note: The do-loop variable must never be changed by other statements within the loop! This will cause
great confusion.

Here is an example that calculates and prints all the powers of two that are less than or equal to 100 by
using if and goto only:

integer n
n = 1
10 if (n .le. 100) then
n = 2*n
print*, n
goto 10
Endif

until-loops
If the termination criterium is at the end instead of the beginning, it is often called an until-loop. The
pseudocode looks like this:
do
statements
until (logical expr)
Again, this should be implemented in Fortran 77 by using if and goto:
label continue
statements
if (logical expr) goto label
7. Arrays

Fortran language

 9

 Many scientific computations use vectors and matrices. The data type Fortran uses for
representing such objects is the array. A one-dimensional array corresponds to a vector, while a two-
dimensional array corresponds to a matrix. To fully understand how this works in Fortran 77, you will
have to know not only the syntax for usage, but also how these objects are stored in memory in Fortran
77.

One-dimensional arrays
 The simplest array is the one-dimensional array, which is just a linear sequence of elements
stored consecutively in memory. For example, the declaration
Dimension a(20)
real a
declares a as a real array of length 20. That is, a consists of 20 real numbers stored contiguously in
memory. By convention, Fortran arrays are indexed from 1 and up. Thus the first number in the array is
denoted by a(1) and the last by a(20).
 Each element of an array can be thought of as a separate variable. You reference the i'th element of
array a by a(i). Here is a code segment that stores the 10 first square numbers in the array sq:

Dimension sq(10)
integer i, sq
do 100 i = 1, 10
sq(i) = i**2
100 continue

To read any array is as the following:

1. Read*,(a(i),i=1,5) and can be read more than array in the same instruction as follow :
Read *,(a(i),b(i),i=1,10,2) " using the same variable (i)" , where it is reading the following elements :
a(1),b(1),a(3),b(3),……,a(10),b(10).

2. Or reading by using the loop : do 10 i=1,5 * do 20 i=1,10
 read*,a(i) * read*,a(i),b(i)
 10 continue * 20 continue

And to print any array is as the following:
 1. print *, (a(i),i=1,5) and can be read more than array in the same instruction as follow :
Print*,(a(i),b(i),i=10,1,-2)

2. Or printing by using the loop:
 do 30 i=1,5 * do 20 i=1,10

 print*,a(i) * print *,a(i),b(i)
 30 continue * 20 continue

The difference between the first print and the second is in the first print the elements of the matrix are
printed on the same line (in the form of row), but in the second print the elements of the matrix are
printed in the form of column.

Fortran language

 10

